If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4v^2+v-95=0
a = 4; b = 1; c = -95;
Δ = b2-4ac
Δ = 12-4·4·(-95)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-39}{2*4}=\frac{-40}{8} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+39}{2*4}=\frac{38}{8} =4+3/4 $
| n/13=4;n=52 | | -8.3p+7=-23 | | 4+x/2=5 | | 4(x+0)=+6 | | 3/9c=-12 | | 7x^2-14x+8=8 | | -6(8+2x)=-84 | | x+7/8=174/16 | | 5y^2−39y−8=0 | | 3/5y=6/1 | | 2/7+1=3/14y-1/2 | | 7n+2(n-7)+6=n/30+8-16*2n | | x(x+5)/4x+4=9/5 | | -3+m÷1=-3 | | x-3.73=4.88 | | (4x-x^2)^2=0 | | x^2-14x+54=6 | | 31y+1.2=2.3y+2.8 | | 3r-5=1 | | 7w/6w=18 | | 0.2x+6=3/4 | | 2x+8+41+49=180 | | 2/3x-4/5=1/9 | | m^2-43=-7 | | 4x-10+3x=18 | | 5x-102=-4x+174 | | 12u+10=-4u | | 231=7(1-44n) | | X-7(6-3x)=-174 | | 8.5+n=90 | | x-1/6=4/10 | | 3x-30=12+x |